Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus.

Identifieur interne : 001D71 ( Main/Exploration ); précédent : 001D70; suivant : 001D72

Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus.

Auteurs : Naoki Takata [Japon] ; Toru Taniguchi

Source :

RBID : pubmed:25486888

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

Secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules. Gene duplication is an important mechanism for functional divergence of genes. Secondary cell wall-associated cellulose synthase genes (CesA4, CesA7 and CesA8) are duplicated in Populus plants due to a recent whole genome duplication event. Here, we demonstrate that duplicate CesA genes show tissue-dependent expression divergence in Populus plants. Real-time PCR analysis of Populus CesA genes suggested that Pt × tCesA8-B was more highly expressed than Pt × tCesA8-A in phloem and secondary xylem tissue of mature stem. Histochemical and histological analyses of transformants expressing a GFP-GUS fusion gene driven by Populus CesA promoters revealed that the duplicate CesA genes showed different expression patterns in phloem fibers, secondary xylem, root cap and leaf trichomes. We predicted putative cis-regulatory motifs that regulate expression of secondary cell wall-associated CesA genes, and identified 19 motifs that are highly conserved in the CesA gene family of eudicotyledonous plants. Furthermore, a transient transactivation assay identified candidate transcription factors that affect levels and patterns of expression of Populus CesA genes. The present study reveals that secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules.


DOI: 10.1007/s00425-014-2217-9
PubMed: 25486888


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus.</title>
<author>
<name sortKey="Takata, Naoki" sort="Takata, Naoki" uniqKey="Takata N" first="Naoki" last="Takata">Naoki Takata</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan, naokitakata@affrc.go.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan</wicri:regionArea>
<wicri:noRegion>Japan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taniguchi, Toru" sort="Taniguchi, Toru" uniqKey="Taniguchi T" first="Toru" last="Taniguchi">Toru Taniguchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25486888</idno>
<idno type="pmid">25486888</idno>
<idno type="doi">10.1007/s00425-014-2217-9</idno>
<idno type="wicri:Area/Main/Corpus">001E81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E81</idno>
<idno type="wicri:Area/Main/Curation">001E81</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E81</idno>
<idno type="wicri:Area/Main/Exploration">001E81</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus.</title>
<author>
<name sortKey="Takata, Naoki" sort="Takata, Naoki" uniqKey="Takata N" first="Naoki" last="Takata">Naoki Takata</name>
<affiliation wicri:level="1">
<nlm:affiliation>Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan, naokitakata@affrc.go.jp.</nlm:affiliation>
<country wicri:rule="url">Japon</country>
<wicri:regionArea>Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan</wicri:regionArea>
<wicri:noRegion>Japan</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Taniguchi, Toru" sort="Taniguchi, Toru" uniqKey="Taniguchi T" first="Toru" last="Taniguchi">Toru Taniguchi</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Cell Wall (genetics)</term>
<term>Cell Wall (metabolism)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Chromosomes, Plant (genetics)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genome, Plant (genetics)</term>
<term>Glucosyltransferases (classification)</term>
<term>Glucosyltransferases (genetics)</term>
<term>Glucosyltransferases (metabolism)</term>
<term>Histocytochemistry (MeSH)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phloem (genetics)</term>
<term>Phloem (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (classification)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Promoter Regions, Genetic (genetics)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Synteny (MeSH)</term>
<term>Xylem (genetics)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Chromosomes de plante (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Duplication de gène (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Glucosyltransferases (classification)</term>
<term>Glucosyltransferases (génétique)</term>
<term>Glucosyltransferases (métabolisme)</term>
<term>Génome végétal (génétique)</term>
<term>Histocytochimie (MeSH)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Paroi cellulaire (génétique)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Phloème (génétique)</term>
<term>Phloème (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (classification)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>RT-PCR (MeSH)</term>
<term>Régions promotrices (génétique) (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Synténie (MeSH)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
<term>Xylème (génétique)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Glucosyltransferases</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cell Wall</term>
<term>Chromosomes, Plant</term>
<term>Genome, Plant</term>
<term>Glucosyltransferases</term>
<term>Phloem</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Promoter Regions, Genetic</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chromosomes de plante</term>
<term>Glucosyltransferases</term>
<term>Génome végétal</term>
<term>Paroi cellulaire</term>
<term>Phloème</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Régions promotrices (génétique)</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
<term>Glucosyltransferases</term>
<term>Phloem</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucosyltransferases</term>
<term>Paroi cellulaire</term>
<term>Phloème</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Chromosome Mapping</term>
<term>Gene Duplication</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genetic Variation</term>
<term>Histocytochemistry</term>
<term>Hybridization, Genetic</term>
<term>Molecular Sequence Data</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
<term>Synteny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Cartographie chromosomique</term>
<term>Données de séquences moléculaires</term>
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Histocytochimie</term>
<term>Hybridation génétique</term>
<term>Phylogenèse</term>
<term>RT-PCR</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Synténie</term>
<term>Séquence nucléotidique</term>
<term>Variation génétique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>Secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules. Gene duplication is an important mechanism for functional divergence of genes. Secondary cell wall-associated cellulose synthase genes (CesA4, CesA7 and CesA8) are duplicated in Populus plants due to a recent whole genome duplication event. Here, we demonstrate that duplicate CesA genes show tissue-dependent expression divergence in Populus plants. Real-time PCR analysis of Populus CesA genes suggested that Pt × tCesA8-B was more highly expressed than Pt × tCesA8-A in phloem and secondary xylem tissue of mature stem. Histochemical and histological analyses of transformants expressing a GFP-GUS fusion gene driven by Populus CesA promoters revealed that the duplicate CesA genes showed different expression patterns in phloem fibers, secondary xylem, root cap and leaf trichomes. We predicted putative cis-regulatory motifs that regulate expression of secondary cell wall-associated CesA genes, and identified 19 motifs that are highly conserved in the CesA gene family of eudicotyledonous plants. Furthermore, a transient transactivation assay identified candidate transcription factors that affect levels and patterns of expression of Populus CesA genes. The present study reveals that secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25486888</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>01</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>241</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>29-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-014-2217-9</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="CONCLUSIONS">Secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules. Gene duplication is an important mechanism for functional divergence of genes. Secondary cell wall-associated cellulose synthase genes (CesA4, CesA7 and CesA8) are duplicated in Populus plants due to a recent whole genome duplication event. Here, we demonstrate that duplicate CesA genes show tissue-dependent expression divergence in Populus plants. Real-time PCR analysis of Populus CesA genes suggested that Pt × tCesA8-B was more highly expressed than Pt × tCesA8-A in phloem and secondary xylem tissue of mature stem. Histochemical and histological analyses of transformants expressing a GFP-GUS fusion gene driven by Populus CesA promoters revealed that the duplicate CesA genes showed different expression patterns in phloem fibers, secondary xylem, root cap and leaf trichomes. We predicted putative cis-regulatory motifs that regulate expression of secondary cell wall-associated CesA genes, and identified 19 motifs that are highly conserved in the CesA gene family of eudicotyledonous plants. Furthermore, a transient transactivation assay identified candidate transcription factors that affect levels and patterns of expression of Populus CesA genes. The present study reveals that secondary cell wall-associated CesA genes in Populus have undergone a functional differentiation in expression pattern that may be attributable to evolutionary alteration of regulatory modules.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Takata</LastName>
<ForeName>Naoki</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan, naokitakata@affrc.go.jp.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Taniguchi</LastName>
<ForeName>Toru</ForeName>
<Initials>T</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AB970774</AccessionNumber>
<AccessionNumber>AB970775</AccessionNumber>
<AccessionNumber>AB970776</AccessionNumber>
<AccessionNumber>AB970777</AccessionNumber>
<AccessionNumber>AB970778</AccessionNumber>
<AccessionNumber>AB970779</AccessionNumber>
<AccessionNumber>AB970780</AccessionNumber>
<AccessionNumber>AB970781</AccessionNumber>
<AccessionNumber>AB970782</AccessionNumber>
<AccessionNumber>AB970783</AccessionNumber>
<AccessionNumber>AB970784</AccessionNumber>
<AccessionNumber>AB970785</AccessionNumber>
<AccessionNumber>AB970786</AccessionNumber>
<AccessionNumber>AB970787</AccessionNumber>
<AccessionNumber>AB970788</AccessionNumber>
<AccessionNumber>AB970789</AccessionNumber>
<AccessionNumber>AB970790</AccessionNumber>
<AccessionNumber>AB970791</AccessionNumber>
<AccessionNumber>AB970792</AccessionNumber>
<AccessionNumber>AB970793</AccessionNumber>
<AccessionNumber>AB970794</AccessionNumber>
<AccessionNumber>AB970795</AccessionNumber>
<AccessionNumber>AB970796</AccessionNumber>
<AccessionNumber>AB970797</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C478648">cellulose synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032461" MajorTopicYN="N">Chromosomes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="Y">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="N">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006651" MajorTopicYN="N">Histocytochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="N">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052585" MajorTopicYN="N">Phloem</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026801" MajorTopicYN="N">Synteny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>08</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25486888</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-014-2217-9</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 6;108(36):14992-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21849619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Feb 4;100(3):1450-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007 Nov 06;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2013 Sep 11;13:131</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24024469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Feb;227(3):565-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17938954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1740-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1233-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16950861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Mar;57(4):503-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Jul 29;8(7):e69219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23922694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 May;14(5):248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19375973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jan;73(1):26-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26011122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jun 28;108(26):10756-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Aug 09;12:138</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22877077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):97-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Mar;237(3):799-812</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23132521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1992 Jun;8(3):275-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1633570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Jan;41(Database issue):D1152-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Jan;22(1):95-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21974993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Aug;67(3):499-512</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21649762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Mar 04;11:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Jul;18(7):784-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10888850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Oct;28(10):1539-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19655147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):906-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20488898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 May;66(4):579-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21284754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Dec;45(12):1738-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2004;38:615-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15568988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000781</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Funct Genomic Proteomic. 2009 Jul;8(4):266-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19651705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2003 Jul;118(2-3):209-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12868610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1987 Dec 20;6(13):3901-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3327686</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Aug 29;4:325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24009617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jan;134(1):224-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Feb;180(2):323-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 May;14(3):273-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9628022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 Jul 31;9:99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19646250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(5):957-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Mar;78(4-5):489-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22271306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Oct;63(17):6267-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23105133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Oct;22(10):3461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20952636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Aug;187(3):777-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20546138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Nov;157(3):1452-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21908685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):961-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17885081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2010 Feb;52(2):205-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20377682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Oct;20(10):2763-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18952777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jul;16(7):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16818725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2993-3006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16214898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;179(3):722-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18547376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2010 Aug 06;6:18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687964</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Taniguchi, Toru" sort="Taniguchi, Toru" uniqKey="Taniguchi T" first="Toru" last="Taniguchi">Toru Taniguchi</name>
</noCountry>
<country name="Japon">
<noRegion>
<name sortKey="Takata, Naoki" sort="Takata, Naoki" uniqKey="Takata N" first="Naoki" last="Takata">Naoki Takata</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001D71 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001D71 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25486888
   |texte=   Expression divergence of cellulose synthase (CesA) genes after a recent whole genome duplication event in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25486888" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020